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Summary. The paper is the Mizar encoding of the Chapter 0 Section 3 of [12] In the paper 
the following concept are defined: Galois connections, Heyting algebras, and Boolean algebras. 

MML Identifier: WAYBEL.l. 
URL Address: http://mizar.uw.bialystok.pl/JFH/Vol8/waybel_l .html. 

The articles [19], [21], [10], [22], [23], [8], [9], [17], [11], [7], [6], [20], [15], [18], [4], [2], [16], [5], [13], [1], 
[14], [3], and [24] provide the notation and terminology for this paper. 

1. PRELIMINARIES 

Let A, B be non empty sets. Observe that every function from A into B is non empty. 
Let __i, __2 be non empty 1-sorted structures and let / be a map from L\ into J_2- Let us observe 

that / is one-to-one if and only if: 

(Def.l)     For all elements x, y of L\ such that f(x) = f(y) holds x = y. 

One can prove the following proposition 

(1) Let L be a non empty 1-sorted structure and let / be a map from L into L. If for every 
element x of L holds f(x) = x, then / = id^. 

Let Zi, L-2 be non empty relation structures and let / be a map from L\ into __2- Let us observe 
that / is monotone if and only if: 

(Def.2)     For all elements x, y of L\ such that x < y holds f(x) < f(y). 

We now state four propositions: 

(2) Let L be a non empty antisymmetric transitive relation structure with g.l.b.'s and let x, y, z 
be elements of L. If x < y, then x n z < y l~l z. 

(3) Let L be a non empty antisymmetric transitive relation structure with l.u.b.'s and let x, y, z 
be elements of L. If x < y, then x U z < y U z. 

(4) Let L be a non empty lower-bounded antisymmetric relation structure and let x be an element 
of L. Then if L has g.l.b.'s, then _Lj, fl x = __x and if L is reflexive and transitive and has l.u.b.'s, 
then ±L Ux = x. 

(5) Let L be a non empty upper-bounded antisymmetric relation structure and let x be an element 
of L. Then if L is transitive and reflexive and has g.l.b.'s, then TL \~\x = X and if L has l.u.b.'s, 
then TL U_ = TL. 

Let L be a non empty relation structure. We say that L is distributive if and only if: 
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GALOIS CONNECTIONS 2 

(Def.3)     For all elements x, y, z of L holds x n (y U z) = x F]y U x \1 z. 

We now state the proposition 

(6) For every lattice L holds L is distributive iff for all elements x, y, z of L holds x U y f\ z = 
(x U y) n (x U z). 

Let X be a set. Note that 2^ is distributive. 
Let S be a non empty relation structure and let X be a set. We say that min X exists in S if and 

only if: 

(Def.4)     Inf X exists in S and \~\SX £ X. 

We introduce X has the minimum in S as a synonym of min X exists in S We say that max X exists 
in S if and only if: 

(Def.5)     Sup X exists in S and \JS X £ X. 

We introduce X has the maximum in S as a synonym of max X exists in S. 
Let S be a non empty relation structure, let s be an element of 5, and let X be a set. The predicate 

s = min X is defined by: 

(Def.6)     Inf X exists in S and s = f\sX and n^X £ X. 

The predicate s = maxX is defined as follows: 

(Def.7)     Sup X exists in S and s — \_\s X and |J5 X £ X. 

Let L be a relation structure. One can verify that id^ is isomorphic. 
Let Lj, L2 be relation structures. We say that L\ and L2 are isomorphic if and only if: 

(Def.8)     There exists map from L\ into L2 which is isomorphic. 
Let us observe that this predicate is reflexive. 

The following two propositions are true: 
(7) For all non empty relation structures L\, L2 such that L\ and L2 are isomorphic holds L2 

and L\ are isomorphic. 

(8) Let Li, L2, Lz be relation structures. Suppose L\ and L2 are isomorphic and L2 and L3 are 
isomorphic. Then L\ and L3 are isomorphic. 

2. GALOIS CONNECTIONS 

Let S, T be relation structures. A set is said to be a connection between S and T if: 

(Def.9)     There exists a map g from S into T and there exists a map d from T into S such that it = (g, 
d). 

Let S, T be relation structures, let g be a map from S into T, and let d be a map from T into S. 
Then (5, c?) is a connection between 5 and T. 

Let 5, T be non empty relation structures and let g\ be a connection between S and T. We say 
that <7i is Galois if and only if the condition (Def.10) is satisfied. 

(Def.10)     There exists a map g from S into T and there exists a map d from T into S such that 

(i)     5i = (5, «0, 
(ii)     </ is monotone, 

(iii)     d is monotone, and 
(iv)     for every element t of T and for every element s of 5 holds t < g(s) iff d(i) < s. 

The following proposition is true 

(9)     Let S, T be non empty poset, and let g be a map from S into T, and let dhe a, map from T 
into 5. Then (5, d) is Galois if and only if the following conditions are satisfied: 

(i)     g is monotone, 
(ii)     d is monotone, and 

(iii)     for every element t of T and for every element s of S holds t < g(s) iff d(t) < s. 
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Let S, T be non empty relation structures and let g be a map from S into T.  We say that g is 
upper adjoint if and only if: 

(Def.ll)     There exists a map d from T into S such that (g, d) is Galois. 

We introduce g is lower-bounded as a synonym of g is upper adjoint. 
Let S, T be non empty relation structures and let d be a map from T into S. We say that d is 

lower adjoint if and only if: 

(Def.12)     There exists a map g from S into T such that {g, d) is Galois. 

We introduce d is upper-bounded as a synonym of d is lower adjoint. 
One can prove the following propositions: 

(10) Let 5, T be non empty poset, and let g be a map from S into T, and let d be a map from T 
into S. If (<?, d) is Galois, then 5 is upper adjoint and d is lower adjoint. 

(11) Let S, T be non empty poset, and let g be a map from S into T, and let rf be a map from T 
into 5. Then (g, d) is Galois if and only if the following conditions are satisfied: 

(i)     g is monotone, and 
(ii)     for every element t of T holds d(t) = min g _1 ]t. 

(12) Let 5, T be non empty poset, and let g be a map from S into T, and let d be a map from T 
into 5. Then (<?, e?) is Galois if and only if the following conditions are satisfied: 

(i)     d is monotone, and 
(ii)     for every element s of S holds g(s) = maxd _1 [s. 

(13) Let S, T be non empty poset and let g be a map from S into T. If g is upper adjoint, then g 
is infs-preserving. 

Let S, T be non empty poset. One can verify that every map from S into T which is upper adjoint 
is also infs-preserving. 

Next we state the proposition 
(14) Let S, T be non empty poset and let d be a map from T into S. If d is lower adjoint, then d 

is sups-preserving. 

Let S, T be non empty poset. Observe that every map from S into T which is lower adjoint is also 
sups-preserving. 

We now state a number of propositions: 

(15) Let 5, T be non empty poset and let g be a map from S into T. Suppose S is complete and 
g is infs-preserving. Then there exists a map d from T into 5 such that (g, d) is Galois and for 
every element t of T holds rf(i) = min g _1 fi. 

(16) Let 5, T be non empty poset and let d be a map from T into 5. Suppose T is complete and 
d is sups-preserving. Then there exists a map g from 5 into T such that (#, d) is Galois and 
for every element s of S holds g(s) = maxrf _1 |s. 

(17) Let 5, T be non empty poset and let g be a map from S into T. Suppose S is complete. Then 
g is infs-preserving if and only if g is monotone and g has a lower adjoint. 

(18) Let 5, T be non empty poset and let dbea map from T into 5\ Suppose T is complete. Then 
d is sups-preserving if and only if d is monotone and d has an upper adjoint. 

(19) Let S, T be non empty poset, and let g be a map from S into T, and let rfbea map from T 
into S. If (</, d) is Galois, then d ■ g < ids and idy < g ■ d. 

(20) Let 5, T be non empty poset, and let g be a map from S into T, and let c? be a map from T 
into 5. Suppose g is monotone and d is monotone and d ■ g < ids and idy < g • d. Then (#, d) 
is Galois. 

(21) Let 5, T be non empty poset, and let g be a map from S into T, and let d be a map from 
T into 5. Suppose g is monotone and d is monotone and d ■ g < ids and idy < g ■ d. Then 
d = d ■ g ■ d and g — g ■ d- g. 

(22) Let 5, T be non empty relation structures, and let 5 be a map from S into T, and let dbe a, 
map from T into S. If d = d-g-d and 5 = g -d-g, then g-d is idempotent and d-gis idempotent. 
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(23) Let S, T be non empty poset, and let g be a map from S into T, and let d be a map from T into 
S. Suppose (#, d) is Galois and g is onto. Let t be an element of T. Then d(i) = ming _1 {t}. 

(24) Let 5, T be non empty poset, and let g be a map from S into T, and let rfbea map from T 
into 5. If for every element t of T holds rf(£) = min g _1 {i}, then g ■ d = idj. 

(25) Let Xi, £2 be non empty 1-sorted structures, and let #3 be a map from L\ into X2, and let g2 

be a map from X2 into Xi. If g2 ■ 93 — id(Lj), then 53 is one-to-one and gi is onto. 

(26) Let 5, T be non empty poset, and let g be a map from S into T, and let d be a map from T 
into 5. If (<7, c?) is Galois, then g is onto iff d is one-to-one. 

(27) Let 5, T be non empty poset, and let g be a map from S into T, and let d be a map from T into 
5. Suppose {g, d) is Galois and d is onto. Let s be an element of S. Then 5(5) = maxd-1 {s}. 

(28) Let 5, T be non empty poset, and let g be a map from S into T, and let d be a map from T 
into 5. If for every element s of S holds 5(5) = maxeZ -1 {s}, then d • g = ids- 

(29) Let 5, T be non empty poset, and let g be a map from S into T, and let d be a map from T 
into 5. If (5, d) is Galois, then g is one-to-one iff d is onto. 

Let X be a non empty relation structure and let p be a map from X into X.   We say that p is 
projection if and only if: 

(Def.13)     p is idempotent and monotone. 

We introduce p is bounded as a synonym of p is projection. 
Let X be a non empty relation structure. One can verify that id^ is projection. 
Let X be a non empty relation structure.  One can verify that there exists a map from X into X 

which is projection. 
Let X be a non empty relation structure and let c be a map from X into X. We say that c is closure 

if and only if: 

(Def.14)     c is projection and id^ < c. 

We introduce c is join-inheriting as a synonym of c is closure. 
Let X be a non empty relation structure. Observe that every map from X into X which is closure 

is also projection. 
Let X be a non empty reflexive relation structure.   Note that there exists a map from X into X 

which is closure. 
Let X be a non empty reflexive relation structure. Observe that id^ is closure. 
Let X be a non empty relation structure and let A; be a map from X into X. We say that k is kernel 

if and only if: 

(Def.15)     k is projection and k < idf,. 

We introduce k is meet-inheriting as a synonym of k is kernel. 
Let X be a non empty relation structure. Observe that every map from X into X which is kernel is 

also projection. 
Let X be a non empty reflexive relation structure.   Note that there exists a map from X into X 

which is kernel. 
Let X be a non empty reflexive relation structure. Note that id^, is kernel. 
The following two propositions are true: 

(30) Let X be a non empty poset, and let c be a map from X into X, and let X be a subset of X. 
Suppose c is a closure operator and inf X exists in X and X C rngc. Then inf X = c(inf X). 

(31) Let X be a non empty poset, and let A; be a map from X into X, and let X be a subset of X. 
Suppose A: is a kernel operator and sup X exists in X and X C rngfc. Then supX = fc(supX). 

Let Xi, X2 be non empty relation structures and let g be a map from L\ into X2. The functor g° 
yielding a map from L\ into Img is defined as follows: 

(Def.16)     g° = (the carrier of Im5) |" (g). 

The following proposition is true 

(32) For all non empty relation structures X1; X2 and for every map g from L\ into X2 holds g° = g. 
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Let L\, L2 be non empty relation structures and let g be a map from L\ into L2- Note that g° is 
onto. 

One can prove the following proposition 

(33) Let L\, Li be non empty relation structures and let g be a map from L\ into Li- If g is 
monotone, then g° is monotone. 

Let L\, £2 be non empty relation structures and let g be a map from L\ into L2. The functor g0 

yields a map from Im g into Z2 and is defined by: 

(Def.17)     g0 - idTm5. 
We now state the proposition 

(34) Let £1, L<i be non empty relation structures, and let g be a map from L\ into L2, and let s 
be an element of Img. Then g0(s) — s. 

Let Zii, L2 be non empty relation structures and let g be a map from L\ into L2. Note that </0 is 
one-to-one and monotone. 

The following propositions are true: 

(35) For every non empty relation structure L and for every map / from L into L holds f0- f° = f. 

(36) For every non empty poset L and for every map / from L into L such that / is idempotent 
holds f° • fo = idim/. 

(37) Let L be a non empty poset and let / be a map from L into L. Suppose / is a projection 
operator. Then there exists a non empty poset T and there exists a map q from L into T and 
there exists a map % from T into L such that q is monotone and onto and i is monotone and 
one-to-one and f = i ■ q and idy = q ■ i. 

(38) Let i be a non empty poset and let / be a map from L into L. Given a non empty poset 
T and a map q from L into T and a map i from T into Z such that q is monotone and i is 
monotone and f = i ■ q and idy = q ■ i. Then / is a projection operator. 

(39) For every non empty poset L and for every map / from L into L such that / is a closure 
operator holds (/0, /°) is Galois. 

(40) Let L be a non empty poset and let / be a map from L into L. Suppose / is a closure 
operator. Then there exists a non empty poset S and there exists a map g from S into L and 
there exists a map d from L into S such that {g, d) is Galois and / = g ■ d. 

(41) Let L be a non empty poset and let / be a map from L into L. Suppose that 
(i)     / is monotone, and 

(ii)     there exists a non empty poset S and there exists a map g from S into L and there exists a 
map d from L into S such that (g, d) is Galois and f = g ■ d. 
Then / is a closure operator. 

(42) For every non empty poset L and for every map / from L into L such that / is a kernel 
operator holds (/°, /0) is Galois. 

(43) Let L be a non empty poset and let / be a map from L into L. Suppose / is a kernel operator. 
Then there exists a non empty poset T and there exists a map g from L into T and there exists 
a map d from T into i such that (#, d) is Galois and / = d • g. 

(44) Let L be a non empty poset and let / be a map from L into L. Suppose that 
(i)     / is monotone, and 

(ii)     there exists a non empty poset T and there exists a map g from L into T and there exists a 
map d from T into L such that (5, c?) is Galois and f = d ■ g. 
Then / is a kernel operator. 

(45) Let X be a non empty poset and let p be a map from L into L. Suppose p is a projection 
operator. Then rngp = {c : c ranges over elements of L, c < p(c)} D {k : k ranges over elements 
of L,p(k) < k}. 

(46) Let L be a non empty poset and let p be a map from L into L. Suppose p is a projection 
operator. Then 
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(i)     {c : c ranges over elements of £, c < p(c)} is a non empty subset of £, and 
(ii)      {k : k ranges over elements of £, p{k) < k} is a non empty subset of £. 

(47) Let £ be a non empty poset and let p be a map from £ into £.  Suppose p is a projection 
operator. Then rng(p \ {c : c ranges over elements of £, c < p(c)}) = rngp and rng(p \ {k : k 
ranges over elements of £, p(k) < k}) = rngp. 

(48) Let I be a non empty poset and let p be a map from £ into £. Suppose p is a projection 
operator. Let £4 be a non empty subset of £ and let £5 be a non empty subset of £. Suppose 
£4 = {c : c ranges over elements of £, c < p(c)}. Then p \ L4 is a map from sub(.L}) into sub(.Lt). 

(49) Let £ be a non empty poset and let p be a map from £ into £. Suppose p is a projection 
operator. Let £5 be a non empty subset of £. Suppose L5 = {k : k ranges over elements of £, 
p{k) < k}. Then p \ £5 is a map from sub(£s) into sub(£s). 

(50) Let £ be a non empty poset and let p be a map from £ into £. Suppose p is a projection 
operator. Let £4 be a non empty subset of £. Suppose £4 = {c : c ranges over elements of 
L, c < p(c)}. Let p\ be a map from sub(£4) into sub(£4). If p\ — p \ £4, then p\ is a closure 
operator. 

(51) Let L be a non empty poset and let p be a map from L into L. Suppose p is a projection 
operator. Let X5 be a non empty subset of L. Suppose L5 = {k : k ranges over elements of 
L, p(k) < k}. Let p? be a map from sub(£s) into sub(£s). If P2 = p \ £5, then P2 is a kernel 
operator. 

(52) Let L be a non empty poset and let p be a map from L into L. Suppose p is monotone. 
Let £4 be a subset of L. If £4 = {c : c ranges over elements of L, c < p(c)}, then sub(L4) is 
sups-inheriting. 

(53) Let £ be a non empty poset and let p be a map from £ into £. Suppose p is monotone. Let 
£5 be a subset of £. If £5 = {k : A; ranges over elements of £, p(fc) < k], then sub(£5) is 
infs-inheriting. 

(54) Let £ be a non empty poset and let p be a map from £ into £. Suppose p is a projection 
operator. Let £4 be a non empty subset of £. Suppose £4 = {c : c ranges over elements of £, 
c < p(c)}- Then 

(i)     if p is infs-preserving, then sub(£4) is infs-inheriting and Imp is infs-inheriting, and 
(ii)     if p is fütered-infs-preserving, then sub(£4) is fütered-infs-inheriting and Imp is filtered-infs- 

inheriting. 

(55) Let £ be a non empty poset and let p be a map from £ into £. Suppose p is a projection 
operator. Let £5 be a non empty subset of £. Suppose £5 = {k : k ranges over elements of £, 
p(k) < k}. Then 

(i)     if p is sups-preserving, then sub(£5) is sups-inheriting and Imp is sups-inheriting, and 
(ii)     if p is directed-sups-preserving, then sub(£s) is directed-sups-inheriting and Imp is directed- 

sups-inheriting. 

(56) Let £ be a non empty poset and let p be a map from £ into £. Then if p is a closure operator, 
then Imp is infs-inheriting and if p is a kernel operator, then Imp is sups-inheriting. 

(57) Let £ be a complete non empty poset and let p be a map from £ into £. If p is a projection 
operator, then Imp is complete. 

(58) Let £ be a non empty poset and let c be a map from £ into £. Suppose c is a closure operator. 
Then 

(i)     c° is sups-preserving, and 
(ii)      for every subset X of £ such that X C the carrier of Im c and sup X exists in £ holds sup 

X exists in Im c and Ulmc X = c(\_\L X). 

(59) Let £ be a non empty poset and let fcbea map from £ into £. Suppose k is a kernel operator. 
Then 

(i)     A;0 is infs-preserving, and 
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(ii)     for every subset X of L such that X C the carrier of Im k and inf X exists in L holds inf X 
exists in Im A; and fllmA^ = A;( f-j^JC). 

3. HEYTING ALGEBRA 

One can prove the following propositions: 

(60) For every complete non empty poset L holds (IdsMap(2/), SupMap(i)) is Galois and 
SupMap(L) is sups-preserving. 

(61) For every complete non empty poset L holds IdsMap(X) • SupMap(L) is a closure operator 
and Im(IdsMap(£) • SupMap(L)) and L are isomorphic. 

Let S be a non empty relation structure and let x be an element of S. The functor x fl — yielding 
a map from S into S is defined by: 

(Def.18)     For every element s of S holds (x n —)(s) = xf\ s. 

The following propositions are true: 

(62) For every non empty relation structure S and for all elements x, t of S holds {s : s ranges 
over elements of S, x n s < i) = (x fl —) -1 [t. 

(63) For every non empty semilattice S and for every element x of S holds x U — is monotone. 

Let 5 be a non empty semilattice and let x be an element of S. Observe that x n - is monotone. 
Next we state several propositions: 

(64) Let S be a non empty relation structure, and let x be an element of 5, and let X be a subset 
of S. Then (x fl —)°X = {x n y : y ranges over elements of S, y G X}. 

(65) Let S be a non empty semilattice. Then for every element x of S holds x ("1 — has an upper 
adjoint if and only if for all elements x, t of S holds max {s : s ranges over elements of 5, 
x fl s < t} exists in S. 

(66) Let S be a non empty semilattice. Suppose that for every element x of S holds x l~l — has an 
upper adjoint. Let X be a subset of 5". Suppose sup X exists in S. Let x be an element of S. 
Then a; n LJ5 X = \Jsix n V '• V ranges over elements of S, y G X}. 

(67) Let 5 be a complete non empty poset. Then for every element x of S holds x n — has 
an upper adjoint if and only if for every subset X of 5 and for every element x of S holds 
a; n |_|5 X = \Jsix n 2/ : y ranges over elements of 5, ?/ G X}. 

(68) Let S be a non empty lattice. Suppose that for every subset X of S such that sup X exists 
in S and for every element x of 5 holds x n Us^ = Usi^ n V '■ V ranges over elements of S, 
y E X}. Then 6" is distributive. 

Let H be a non empty relation structure. We say that H is Heyting if and only if: 

(Def.19)     H is a lattice and for every element x of H holds x fl - has an upper adjoint. 

We introduce H is sups-inheriting as a synonym of i? is Heyting. 
Let us note that every non empty relation structure which is Heyting is also reflexive transitive 

and antisymmetric and has g.l.b.'s and l.u.b.'s. 
Let H be a non empty relation structure and let a be an element of H. Let us assume that H is 

Heyting. The functor a =*> — yields a map from // into H and is defined as follows: 
(Def.20)     (a => -, a n -) is Galois. 

One can prove the following proposition 

(69) For every non empty relation structure H such that H is a Heyting algebra holds H is 
distributive. 

One can verify that every non empty relation structure which is Heyting is also distributive. 
Let H be a non empty relation structure and let a, y be elements of H. The functor a => y yielding 

an element of H is defined by: 



GALOIS CONNECTIONS 8 

(Def.21)     a^y = (a^ -){y). 
We now state two propositions: 

(70) Let H be a non empty relation structure.   Suppose H is a Heyting algebra.   Let x, a, y be 
elements of H. Then x > a n y if and only if a =*> x > y. 

(71) For every non empty relation structure H such that if is a Heyting algebra holds H is upper- 
bounded. 

Let us note that every non empty relation structure which is Heyting is also upper-bounded. 
The following propositions are true: 

(72) Let H be a non empty relation structure.   Suppose if is a Heyting algebra.   Let a, b be 
elements of H. Then TJJ = a => b if and only if a < b. 

(73) For every non empty relation structure H such that if is a Heyting algebra and for every 
element a of H holds TJJ = a =>■ a. 

(74) Let if be a non empty relation structure.   Suppose if is a Heyting algebra.   Let a, b be 
elements of H. If T# = a => b and TJJ = b =>■ a, then a = b. 

(75) For every non empty relation structure if such that if is a Heyting algebra and for all elements 
a, 6 of if holds b < a => b. 

(76) For every non empty relation structure H such that if is a Heyting algebra and for every 
element a of H holds TJJ = a => T#. 

(77) For every non empty relation structure H such that H is a Heyting algebra and for every 
element b of H holds 6 = T# =>■ 6. 

(78) Let if be a non empty relation structure.  Suppose H is a Heyting algebra.  Let a, b, c be 
elements of if. If a < &, then & =£> c < a =>■ c. 

(79) Let if be a non empty relation structure.  Suppose H is a Heyting algebra.   Let a, &, c be 
elements of H. If 6 < c, then a =s> 6 < a =£> c. 

(80) Let if be a non empty relation structure.   Suppose H is a Heyting algebra.   Let a, b be 
elements of H. Then a n (a =>■ &) = a n b. 

(81) Let if be a non empty relation structure.   Suppose if is a Heyting algebra.   Let a, b, c be 
elements of H. Then a U 6 =>• c = (a =*> c) n (6 =>■ c). 

Let if be a non empty relation structure and let a be an element of H. The functor ->a yielding 
an element of H is defined by: 

(Def.22)     -ia = a => _LH- 
One can prove the following propositions: 

(82) Let if be a non empty relation structure. Suppose if is a Heyting algebra and lower-bounded. 
Let a be an element of H. Then ->a = max{a; : x ranges over elements of H, a n x = _L//}. 

(83) Let Ä^ be a non empty relation structure. If H is a Heyting algebra and lower-bounded, then 
-i(J_#) = TH and -i(T#) = ±#- 

(84) Let H be a non empty lower-bounded relation structure.  Suppose H is a Heyting algebra. 
Let a, b be elements of H. Then -ia > b if and only if ->b > a. 

(85) Let if be a non empty lower-bounded relation structure.  Suppose H is a Heyting algebra. 
Let a, b be elements of H. Then ->a > b if and only if a n b = -L#. 

(86) Let if be a non empty lower-bounded relation structure.  Suppose if is a Heyting algebra. 
Let a, b be elements of H. If a < 6, then -\b < ->a. 

(87) Let if be a non empty lower-bounded relation structure.  Suppose H is a Heyting algebra. 
Let a, b be elements of H. Then -i(a U b) = ->a fl ->6. 

(88) Let if be a non empty lower-bounded relation structure.  Suppose H is a Heyting algebra. 
Let a, 6 be elements of if. Then -i(a fl 6) > ->a U -i&. 

Let £ be a non empty relation structure and let x, y be elements of L.   We say that y is a 
complement of x if and only if: 
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(Def.23)     x Uy = TL and a; n y = _LL. 
Let L be a non empty relation structure. We say that L is complemented if and only if: 

(Def.24)     For every element x of L holds there exists element of L which is a complement of x. 

Let X be a set. One can verify that 2Q is complemented. 
We now state two propositions: 

(89) Let L be a non empty bounded lattice. Suppose L is a Heyting algebra and for every element 
x of L holds -i-ia; = x. Let x be an element of L. Then -ix is a complement of x. 

(90) Let L be a non empty bounded lattice. Then L is distributive and complemented if and only 
if X is a Heyting algebra and for every element x of L holds —i—ia; = x. 

Let B be a non empty relation structure. We say that B is Boolean if and only if: 

(Def.25)     B is a lattice bounded distributive and complemented. 
We introduce B is relation structure yielding and B is filtered as synonyms of B is Boolean. 

One can verify that every non empty relation structure which is Boolean is also reflexive transitive 
antisymmetric bounded distributive and complemented and has g.l.b.'s and l.u.b.'s. 

One can check that every non empty relation structure which is reflexive transitive antisymmetric 
bounded distributive and complemented and has g.l.b.'s and l.u.b.'s is also Boolean. 

Let us observe that every non empty relation structure which is Boolean is also Heyting. 
Let us observe that there exists a lattice which is strict Boolean and non empty. 
One can check that there exists a lattice which is strict Heyting and non empty. 
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for this paper. 

1. THE "WAY-BELOW" RELATION 

Let L be a non empty reflexive relation structure and let a;, y be elements of L. We say that x is 
way below y if and only if: 

(Def.l)     For every non empty directed subset D of L such that y < sup D there exists an element d of 
L such that d £ D and x < d. 

We introduce x <C y and y > x as synonyms of x is way below y. 
Let X be a non empty reflexive relation structure and let x be an element of L. We say that x is 

compact if and only if: 
(Def.2)     x is way below x. 

We introduce x is isolated from below as a synonym of x is compact. 
One can prove the following propositions: 

(1) Let L be a non empty reflexive antisymmetric relation structure and let x, y be elements of 
L. If x <C y, then x < y. 

(2) Let L be a non empty reflexive transitive relation structure and let u, x, y, z be elements of 
L. If u < x and x<i/ and y < z, then u <C z. 

(3) Let L be a non empty poset. Suppose L is inf-complete or has l.u.b.'s. Let x, y, z be elements 
of L. If x <C z and y <C z, then sup {a;, y} exists in L and iU?/<z. 

(4) Let L be a lower-bounded antisymmetric reflexive non empty relation structure and let x be 
an element of L. Then li<i. 

JThis work has been partially supported by Office of Naval Research Grant N00014-95-1-1336. 
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(5) For every non empty poset L and for all elements x, y, z of L such that x <C y and y <C z 
holds x <C z. 

(6) Let L be a non empty reflexive antisymmetric relation structure and let x, y be elements of 
L. If £ <C y and a; > y, then x = y. 

Let I be a non empty reflexive relation structure and let x be an element of L.  The functor fa: 
yielding a subset of £ is defined by: 

(Def.3)     lx = {y : y ranges over elements of L, y <€. x}. 

The functor fa; yielding a subset of L is defined as follows: 

(Def.4)     fa: = {y : y ranges over elements of i, y :> a;}. 

The following propositions are true: 
(7) For every non empty reflexive relation structure L and for all elements a;, y of L holds x £ jy 

iff a; < y. 
(8) For every non empty reflexive relation structure X and for all elements x, y of L holds a; £ jy 

iff a; > y. 
(9) For every non empty reflexive antisymmetric relation structure L and for every element x of 

L holds a; > lx. 

(10) For every non empty reflexive antisymmetric relation structure L and for every element x of 
L holds x < fa:. 

(11) For every non empty reflexive antisymmetric relation structure L and for every element x of 
L holds lx C ja; and fa; C fx. 

(12) Let L be a non empty reflexive transitive relation structure and let x, y be elements of L. If 
x < y, then ja; C jy and fy C fa;. 

Let L be a lower-bounded non empty reflexive antisymmetric relation structure and let x be an 
element of L. One can check that ja: is non empty. 

Let L be a non empty reflexive transitive relation structure and let x be an element of L. One can 
verify that ja; is lower and fa; is upper. 

Let L be a sup-semilattice and let x be an element of L. One can check that ja; is directed. 
Let L be an inf-complete non empty poset and let x be an element of L. Observe that ja; is directed. 
Let L be a connected non empty relation structure. Note that every subset of L is directed and 

filtered. 
Let us note that every non empty chain which is up-complete and lower-bounded is also complete. 
Let us observe that there exists a non empty chain which is complete. 
One can prove the following propositions: 

(13) For every up-complete non empty chain L and for all elements x, y of L such that x < y holds 
x < y. 

(14) Let L be a non empty reflexive antisymmetric relation structure and let x, y be elements of 
L. If x is not compact and x <C y, then x < y. 

(15) For every non empty lower-bounded reflexive antisymmetric relation structure L holds ±L is 
compact. 

(16) For every up-complete non empty poset L and for every non empty finite directed subset D 
of L holds sup D £ D. 

(17) For every up-complete non empty poset L such that L is finite holds every element of L is 
isolated from below. 

2. THE WAY-BELOW RELATION IN OTHER TERMS 

The scheme SSubsetEx deals with a non empty relation structure A and a unary predicate V, and 
states that: 
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There exists a subset X of A such that for every element x of A holds a; 6 X iff V[x] 
for all values of the parameters. 

The following propositions are true: 

(18) Let X be a complete lattice and let x, y be elements of X. Suppose x <C y- Let X be a subset 
of X. If y < sup X, then there exists a finite subset A of X such that AC X and x < sup A. 

(19) Let X be a complete lattice and let x, y be elements of X. Suppose that for every subset X 
of X such that y < sup X there exists a finite subset A of X such that iCI and re < sup A. 
Then iCy. 

(20) Let X be a non empty reflexive transitive relation structure and let x, y be elements of X. If 
x<j/, then for every ideal I of L such that y < sup / holds x £ I. 

(21) Let X be an up-complete non empty poset and let x, y be elements of X. If for every ideal / 
of X such that y < sup/ holds x £ I, then x <C y. 

(22) Let X be a lower-bounded lattice. Suppose X is meet-continuous. Let x, y be elements of X. 
Then x <C 2/ if and only if for every ideal I of £ such that y = sup / holds x £ I. 

(23) Let X be a complete lattice. Then every element of X is compact if and only if for every non 
empty subset X of X there exists an element x of X such that x £ X and for every element y of 
X such that y E X holds x jt y. 

3. CONTINUOUS LATTICES 

Let X be a non empty reflexive relation structure. We say that X satisfies axiom of approximation 
if and only if: 

(Def.5)     For every element x of X holds x = sup lx. 

Let us mention that every non empty reflexive relation structure which is trivial satisfies axiom of 
approximation. 

Let X be a non empty reflexive relation structure. We say that X is continuous if and only if: 

(Def.6)     For every element x of X holds lx is non empty and directed and X is up-complete and satisfies 
axiom of approximation. 

Let us observe that every non empty reflexive relation structure which is continuous is also up- 
complete and satisfies axiom of approximation and every lower-bounded sup-semilattice which is up- 
complete and satisfies axiom of approximation is also continuous. 

One can check that there exists a lattice which is continuous complete and strict. 
Let X be a continuous non empty reflexive relation structure and let x be an element of X. One 

can check that lx is non empty and directed. 
We now state two propositions: 

(24) Let X be an up-complete semilattice. Suppose that for every element x of X holds lx is non 
empty and directed. Then X satisfies axiom of approximation if and only if for all elements x, 
y of X such that x j£ y there exists an element u of X such that «<i and u £ y. 

(25) For every continuous lattice X and for all elements x, y of X holds x < y iff lx C ly. 

One can verify that every non empty chain which is complete satisfies axiom of approximation. 
The following proposition is true 

(26) For every complete lattice X such that every element of X is compact holds X satisfies axiom 
of approximation. 
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4. THE WAY-BELOW RELATION IN DIRECT POWERS 

Let / be a binary relation. We say that / is nonempty if and only if: 

(Def.7)     For every 1-sorted structure S such that S € rng / holds S is non empty. 

We say that / is reflexive-yielding if and only if: 

(Def.8)     For every relation structure S such that S 6 rng/ holds S is reflexive. 

Let 7 be a set. Note that there exists a many sorted set indexed by / which is relation structure 
yielding nonempty and reflexive-yielding. 

Let I be a set and let J be a relation structure yielding nonempty many sorted set indexed by I. 
One can check that J~J J is non empty. 

Let I be a non empty set, let J be a relation structure yielding nonempty many sorted set indexed 
by /, and let i be an element of I. Then J(i) is a non empty relation structure. 

Let I be a set and let J be a relation structure yielding nonempty many sorted set indexed by I. 
One can verify that every element of FJ J is function-like and relation-like. 

Let 7 be a non empty set, let J be a relation structure yielding nonempty many sorted set indexed 
by 7, let x be an element of J] J, and let i be an element of I. Then x(i) is an element of J(i). 

Let /be a non empty set, let J be a relation structure yielding nonempty many sorted set indexed 
by 7, let i be an element of 7, and let X be a subset of FJ J. Then TT{X is a subset of J(i). 

Next we state two propositions: 

(27) Let I be a non empty set, and let J be a relation structure yielding nonempty many sorted 
set indexed by 7, and let x be a function. Then x is an element of FJ./ if and only if dom x = I 
and for every element i of I holds x(i) is an element of J(i). 

(28) Let I be a non empty set, and let J be a relation structure yielding nonempty many sorted 
set indexed by 7, and let x, y be elements of FJ J. Then x < y if and only if for every element i 
of 7 holds x(i) < y(i). 

Let I be a non empty set and let J be a relation structure yielding nonempty reflexive-yielding 
many sorted set indexed by I. Note that FJ J is reflexive. Let i be an element of I. Then J(i) is a 
non empty reflexive relation structure. 

Let 7 be a non empty set, let J be a relation structure yielding nonempty reflexive-yielding many 
sorted set indexed by I, let x be an element of FJ J, and let i be an element of I. Then x(i) is an 
element of J(i). 

The following propositions are true: 

(29) Let I be a non empty set and let J be a relation structure yielding nonempty many sorted 
set indexed by I. If for every element i of I holds J(i) is transitive, then FJ J is transitive. 

(30) Let I be a non empty set and let J be a relation structure yielding nonempty many sorted 
set indexed by I. Suppose that for every element i of I holds J(i) is antisymmetric. Then FJ J 
is antisymmetric. 

(31) Let I be a non empty set and let J be a relation structure yielding nonempty reflexive-yielding 
many sorted set indexed by I. Suppose that for every element i of I holds J(i) is a complete 
lattice. Then FJ J is a complete lattice. 

(32) Let I be a non empty set and let J be a relation structure yielding nonempty reflexive-yielding 
many sorted set indexed by I. Suppose that for every element i of I holds J(i) is a complete 
lattice. Let X be a subset of JJ J and let i be an element of I. Then (sup X)(i) = sup 7T,X. 

(33) Let I be a non empty set and let J be a relation structure yielding nonempty reflexive-yielding 
many sorted set indexed by I. Suppose that for every element i of I holds J(i) is a complete 
lattice. Let x, y be elements of FJ J. Then x <C y if and only if the following conditions are 
satisfied: 

(i)     for every element i of I holds x{i) < y(i), and 
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(ii)     there exists a finite subset K of / such that for every element i of / such that i £ K holds 

»(*) = -Lj(t)- 

5. THE WAY-BELOW RELATION IN TOPOLOGICAL SPACES 

We now state four propositions: 

(34) Let T be a non empty topological space and let x, y be elements of (the topology of T, C). 
Suppose x is way below y. Let F be a family of subsets of T. If F is open and y C (J F, then 
there exists a finite subset G of F such that x C (J G. 

(35) Let T be a non empty topological space and let a;, y be elements of (the topology of T, C). 
Suppose that for every family F of subsets of T such that F is open and y C (J F there exists 
a finite subset G of F such that cc C \JG. Then x is way below y. 

(36) Let T be a non empty topological space, and let x be an element of (the topology of T, C), 
and let X be a subset of T. If x = X, then a; is compact iff X is compact. 

(37) Let T be a non empty topological space and let x be an element of (the topology of T, C). 
Suppose x = the carrier of T. Then x is compact if and only if T is compact. 

Let T be a non empty topological space.   We say that T is locally-compact if and only if the 
condition (Def.9) is satisfied. 

(Def.9)     Let a; be a point of T and let X be a subset of T. Suppose x £ X and X is open. Then there 
exists a subset Y of T such that x 6 IntV and Y C X and Y is compact. 

One can check that every non empty topological space which is compact and T2 is also T3 T4 and 
locally-compact. 

The following proposition is true 

(38) For every set x holds {x}top is T?. 

Let us observe that there exists a non empty topological space which is compact and T2 ■ 
Next we state two propositions: 

(39) Let T be a non empty topological space and let x, y be elements of (the topology of T, C). 
If there exists a subset Z of T such that x C Z and Z C y and Z is compact, then x <C 2/. 

(40) Let T be a non empty topological space. Suppose T is locally-compact. Let x, y be elements 
of (the topology of T, C). If x < y, then there exists a subset Z of T such that x C Z and 
Z C y and Z is compact. 

Let T be a topological structure and let X be a subset of the carrier of T. Then X is a subset of 
T. 

One can prove the following propositions: 

(41) Let T be a non empty topological space. Suppose T is locally-compact and a T2 space. Let 
x, y be elements of (the topology of T, C). If x -C y, then there exists a subset Z of T such 
that Z = x and Z C y and Z is compact. 

(42) Let X be a non empty topological space. Suppose X is a T3 space and (the topology of X, 
C) is continuous. Then X is locally-compact. 

(43) For every non empty topological space T such that T is locally-compact holds (the topology 
of T, C) is continuous. 
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1. AUXILIARY RELATIONS 

Let L be a 1-sorted structure. 
(Def.l)     A binary relation on the carrier of L is called a binary relation on L. 

Let L be a non empty reflexive relation structure.  The functor (L) -waybelow yielding a binary 
relation on L is defined by: 

(Def.2)     For all elements a;, y of L holds (a;, y) £ (L) -waybelow iff x < y. 

Let L be a relation structure. The functor IntRel(i) yields a binary relation on L and is defined 
as follows: 

(Def.3)     IntRel(L) = the internal relation of L. 

Let L be a relation structure and let R be a binary relation on L. We say that R is auxiliary(i) if 
and only if: 

(Def.4)     For all elements x, y of L such that (x, y) £ R holds x < y. 

We say that R is auxiliary(ii) if and only if: 
(Def.5)     For all elements x, y, z, u of L such that u < x and {x, y) £ R and y < z holds (u, z) £ R. 

Let L be a non empty relation structure and let R be a binary relation on L.  We say that R is 
auxiliary(iii) if and only if: 

(Def.6)     For all elements x, y, z of L such that {x, z) £ R and {y, z) £ R holds (a; U y, z) £ R. 

We say that R is auxiliary(iv) if and only if: 

(Def.7)     For every element x of L holds {±L, X) £ R. 
Let L be a non empty relation structure and let R be a binary relation on L.  We say that R is 

auxiliary if and only if: 
(Def.8)     R is auxiliary(i) auxiliary(ii) auxiliary(iii) and auxiliary(iv). 

JThis work was partially supported by Office of Naval Research Grant N00014-95-1-1336. 
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Let L be a non empty relation structure. Observe that every binary relation on L which is auxiliary 
is also auxiliary(i) auxiliary(ii) auxiliary(iii) and auxiliary(iv) and every binary relation on L which is 
auxiliary(i) auxiliary(ii) auxiliary(iii) and auxiliary(iv) is also auxiliary. 

Let L be a lower-bounded transitive antisymmetric relation structure with l.u.b.'s. Observe that 
there exists a binary relation on L which is auxiliary. 

One can prove the following proposition 

(1) Let L be a lower-bounded sup-semilattice, and let A\ be an auxiliary binary relation on L, 
and let x, y, z, u be elements of L. If {x, z) £ Ai and (y, u) £ Ai, then (x U y, z U u) £ A\. 

Let L be a lower-bounded sup-semilattice. Note that every binary relation on L which is auxiliary 
is also transitive. 

Let L be a relation structure. Note that IntRel(iy) is auxiliary(i). 
Let L be a transitive relation structure. Observe that IntRel(iz) is auxiliary(ii). 
Let L be an antisymmetric relation structure with l.u.b.'s. Note that IntRel(L) is auxiliary(iii). 
Let L be a lower-bounded antisymmetric non empty relation structure. Observe that IntRel(Iz) is 

auxiliary(iv). 
In the sequel a is a set. 
Let L be a lower-bounded sup-semilattice. The functor Aux(L) is defined by: 

(Def.9)     a £ Aux(i) iff a is an auxiliary binary relation on L. 

Let L be a lower-bounded sup-semilattice. Note that Aux(X) is non empty. 
One can prove the following two propositions: 

(2) For every lower-bounded sup-semilattice L and for every auxiliary binary relation A\ on L 
holds Ai C IntRel(L). 

(3) For every lower-bounded sup-semilattice L holds T(Aux(L),c) = IntRel(i). 
Let I» be a lower-bounded sup-semilattice. One can verify that (Aux(Z), C) is upper-bounded. 
Let L be a non empty relation structure. The functor AuxBottom(Z,) yielding a binary relation on 

L is defined by: 

(Def.10)     For all elements x, y of L holds (cc, y) £ AuxBottom(i) iff x = _!_£. 
Let L be a lower-bounded sup-semilattice. Observe that AuxBottom(L) is auxiliary. 
The following propositions are true: 

(4) For every lower-bounded sup-semilattice L and for every auxiliary binary relation A\ on L 
holds AuxBottom(i) C A\. 

(5) For every lower-bounded sup-semilattice L and for every auxiliary binary relation A\ on L 
holds i-(Aux(L),c> = AuxBottom(Zz). 

Let L be a lower-bounded sup-semilattice. Observe that (Aux(X), C) is lower-bounded. 
One can prove the following propositions: 

(6) Let L be a lower-bounded sup-semilattice and let a, b be auxiliary binary relations on L. 
Then a n b is an auxiliary binary relation on L. 

(7) Let L be a lower-bounded sup-semilattice and let X be a non empty subset of (Aux(L), C). 
Then f]X is an auxiliary binary relation on L. 

Let L be a lower-bounded sup-semilattice. One can check that (Aux(i), C) has g.l.b.'s. 
Let L be a lower-bounded sup-semilattice. Observe that (Aux(L), C) is complete. 
Let L be a non empty relation structure, let x be an element of L, and let A\ be a binary relation 

on L. The functor (Ai) —below(x) yielding a subset of L is defined as follows: 

(Def.ll)     (Ai) —below(a;) = {y : y ranges over elements of L, {y, x) £ A{). 

The functor (Ai) —above(a:) yielding a subset of L is defined as follows: 

(Def.12)     (^4.i) —above(a;) = {y : y ranges over elements of i, (x, y) £ Ai}. 

We now state the proposition 

(8) Let L be a lower-bounded sup-semilattice, and let x be an element of L, and let Ai be an 
auxiliary(i) binary relation on L. Then (A{) —below(a:) C [x. 
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Let L be a lower-bounded sup-semilattice, let x be an element of L, and let A\ be an auxiliary(ii) 
auxiliary(iii) auxiliary(iv) binary relation on L. Observe that (Ai) -helow(x) is directed lower and 
non empty. 

Let L be a lower-bounded sup-semilattice and let A\ be an auxiliary(ii) auxiliary(iii) auxiliary(iv) 
binary relation on L. The functor {A\) -below yielding a map from L into (Ids(i), C) is defined by: 

(Def.13)     For every element x of L holds (Ai) -below(a;) = (Ax) -below(a;). 

The following three propositions are true: 

(9)     Let L be a non empty relation structure, and let A\ be a binary relation on L, and let a be 
a set, and let y be an element of L. Then a £ (Ai) -below(y) if and only if (a, y) G 4i. 

(10) Let L be a sup-semilattice, and let A\ be a binary relation on L, and let y be an element of 
L. Then a £ (Ai) -above(i/) if and only if (y, a) E A\. 

(11) Let X be a lower-bounded sup-semilattice, and let A\ be an auxiliary binary relation on L, 
and let x be an element of L. If Ai = the internal relation of L, then (Ai) —below(a;) = [x. 

Let £ be a non empty poset. The functor MonSet(L) yields a strict relation structure and is defined 
by the conditions (Def.14). 

(Def.14) (i)      a E the carrier of MonSet(iz) iff there exists a map s from L into (Ids(L), C) such that 
a = s and s is monotone and for every element x of L holds s(x) C [x, and 

(ii)     for all sets c, d holds (c, d) 6 the internal relation of MonSet(Z) iff there exist maps /, g 
from L into (Ids(i), C) such that c = / and d = g and c E the carrier of MonSet(i) and d £ the 
carrier of MonSet(X) and / < g. 

Next we state two propositions: 
(12) Let L be a lower-bounded sup-semilattice. Then MonSet(L) is a full relation substructure of 

((Ids(L), C))the carrier of L. 

(13) Let L be a lower-bounded sup-semilattice, and let A\ be an auxiliary binary relation on L, 
and let x, y be elements of L. If x < y, then (Ai) -below(x) C (Ai) -below(y). 

Let I be a lower-bounded sup-semilattice and let A\ be an auxiliary binary relation on L.  One 
can verify that (Ai) —below is monotone. 

The following proposition is true 

(14) Let L be a lower-bounded sup-semilattice and let A\ be an auxiliary binary relation on L. 
Then (Ai) —below £ the carrier of MonSet(i). 

Let L be a lower-bounded sup-semilattice. One can check that MonSet(L) is non empty. 
We now state several propositions: 

(15) For every lower-bounded sup-semilattice L holds IdsMap(i) E the carrier of MonSet(X). 

(16) For every lower-bounded sup-semilattice L and for every auxiliary binary relation A\ on L 
holds (Ai) -below < IdsMap(i). 

(17) For every lower-bounded non empty poset L and for every ideal I oi L holds ±L £ I- 
(18) For every upper-bounded non empty poset L and for every filter F of L holds T^ £ F. 

(19) For every lower-bounded non empty poset L holds |(-LL) = {J-L}- 

(20) For every upper-bounded non empty poset L holds T(TL) = {TL}- 

In the sequel L is a lower-bounded sup-semilattice, A\ is an auxiliary binary relation on L, and x 
is an element of L. 

The following propositions are true: 

(21) (The carrier of L) \—> {-LL} is a map from L into (Ids(L), C). 
(22) (The carrier of L) \—> {±L} £ the carrier of MonSet(X). 

(23) ((the carrier of L) \—> {-LL}? (AI) —below ) £ the internal relation of MonSet(Z/). 

Let us consider L. One can verify that MonSet(jL) is upper-bounded. 
Let us consider L. The functor Rel2Map(L) yielding a map from (Aux(i),C) into MonSet(L) is 

defined as follows: 
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(Def.15)     For every At holds (Rd2Map(i))(Ai) = (Ax) -below. 
One can prove the following two propositions: 

(24) For all auxiliary binary relations Äi, R2 on L such that R\  C  R2 holds (Ri) -below  < 
(R2) —below. 

(25) For all auxiliary binary relations R\, R2 on L such that R\ C R2 holds (Ri) -below(x) C 
(Ä2) -below(a;). 

Let us consider L. One can verify that Rel2Map(L) is monotone. 
Let us consider L. The functor Map2Rel(L) yields a map from MonSet(Zz) into (Aux(L),C) and 

is defined by the condition (Def.16). 

(Def.16)     Let s be a set. Suppose s G the carrier of MonSet(X). Then there exists an auxiliary binary 
relation Ai on L such that 

(i)     Ai = (Map2Rel(£))(s), and 
(ii)     for all sets x, y holds (x, y) G A\ iff there exist elements x', y' of L and there exists a map 

s' from L into (Ids(L), C) such that x' = x and y' = y and s' = s and x' G s'(y'). 

Let us consider i. Note that Map2Rel(Z) is monotone. 
Next we state two propositions: 

(26) Map2Rel(X) • Rel2Map(i;) = iddomRel2Map(L). 

(27) Rel2Map(X) • Map2Rel(I) = id(the carrier of MonSet(L))- 
Let us consider L. Observe that Rel2Map(i) is one-to-one. 
We now state three propositions: 

(28) (Rel2Map(JL))-1 = Map2Rel(i). 

(29) Rel2Map(I) is isomorphic. 
(30) For every complete lattice L and for every element x of L holds f]{I : / ranges over ideals of 

X, x < sup/} = lx. 

The scheme LambdaC deals with a non empty relation structure A, a unary functor T yielding a 
set, a unary functor Q yielding a set, and a unary predicate V, and states that: 

There exists a function / such that dorn / = the carrier of A and for every element x of 
A holds if V[x], then f(x) = T(x) and if not V[x], then f(x) = G{x) 

for all values of the parameters. 
Let L be a semilattice and let / be an ideal of L. The functor DownMap(Z) yielding a map from 

L into (Ids(Z/), C) is defined as follows: 

(Def.17)     For every element x of L holds if x < sup /, then (DownMap(7))(a;) = [x n I and if x ^ sup 7, 
then (DownMap(/))(x) = [x. 

The following two propositions are true: 

(31) For every semilattice L and for every ideal I of L holds DownMap(Z)  G  the carrier of 
MonSet(X). 

(32) Let L be an antisymmetric reflexive relation structure with g.l.b.'s, and let x be an element 
of L, and let D be a non empty lower subset of L. Then {x} n D = \,x fl D. 

2. APPROXIMATING RELATIONS 

Let L be a non empty relation structure and let A\ be a binary relation on L. We say that A\ is 
approximating if and only if: 

(Def.18)     For every element x of L holds x = sup((Ai) -below(a;)). 

Let I be a non empty poset and let mi be a map from L into (Ids(_L), C).   We say that mi is 
approximating if and only if: 

(Def.19)     For every element x of L there exists a subset i\ of L such that i\ = m\{x) and x = sup i\. 
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One can prove the following propositions: 
(33) For every lower-bounded meet-continuous semilattice L and for every ideal I oi L holds 

DownMap(J) is approximating. 

(34) Every lower-bounded continuous lattice is meet-continuous. 

Let us observe that every lower-bounded lattice which is continuous is also meet-continuous. 
One can prove the following proposition 

(35) For every lower-bounded continuous lattice L and for every ideal I of L holds DownMap(Z) 
is approximating. 

Let L be a non empty reflexive antisymmetric relation structure. One can verify that (L) — waybelow 
is auxiliary(i). 

Let I be a non empty reflexive transitive relation structure.    Observe that (L) —waybelow is 
auxiliary(ii). 

Let L be a poset with l.u.b.'s. Observe that (L) —waybelow is auxiliary(iii). 
Let L be an inf-complete non empty poset. One can check that (L) —waybelow is auxiliary(iii). 
Let L be a lower-bounded antisymmetric reflexive non empty relation structure. Note that (L) —waybelow 

is auxiliary(iv). 
One can prove the following two propositions: 

(36) For every complete lattice L and for every element x of L holds ((£) —waybelow) —below(a;) = 
lx. 

(37) For every lattice L holds IntRel(iz) is approximating. 

Let L be a lower-bounded continuous lattice. Observe that (L) —waybelow is approximating. 
Let L be a complete lattice.   One can verify that there exists an auxiliary binary relation on L 

which is approximating. 
Let L be a complete lattice. The functor App(i) is defined as follows: 

(Def.20)     a G App(L) iff a is an approximating auxiliary binary relation on L. 

Let L be a complete lattice. Note that App(L) is non empty. 
Next we state three propositions: 

(38) Let L be a complete lattice and let mi be a map from L into (Ids(Z/),C). Suppose mi 
is approximating and mi G the carrier of MonSet(Z). Then there exists an approximating 
auxiliary binary relation A\ on L such that Ai = (Map2Rel(L))(mi). 

(39) For every complete lattice L and for every element x of L holds |~|{(DownMap(/))(a;) : / 
ranges over ideals of L} = lx. 

(40) Let X be a lower-bounded meet-continuous lattice and let x be an element of L. Then 
f|{(Ai) —below(a;) : Ai ranges over auxiliary binary relations on L, Ai G App(L)} = \,x. 

In the sequel L will denote a complete lattice. 
One can prove the following propositions: 

(41) L is continuous if and only if for every approximating auxiliary binary relation R on L holds 
(L) —waybelow C R and (i) —waybelow is approximating. 

(42) L is continuous if and only if the following conditions are satisfied: 
(i)     L is meet-continuous, and 

(ii)     there exists an approximating auxiliary binary relation R on L such that for every approxi- 
mating auxiliary binary relation R' on L holds R C R'. 

Let L be a non empty relation structure and let A\ be a binary relation on L.  We say that Ai 
satisfies SI if and only if: 

(Def.21)     For all elements a;, z of L such that (x, z) G Ai and x ^ z there exists an element y of L such 
that {x, y) G Ax and {y, z) G Ai and x ^ y. 

We introduce Ai is fütered-infs-preserving as a synonym of Ai satisfies SI. 
Let L be a non empty relation structure and let A\ be a binary relation on L.  We say that Ai 

satisfies INT if and only if: 
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(Def.22)     For all elements x, z of L such that {x, z) G A\ there exists an element y of L such that {x, 
y) G Ai and (j/, z) G Ai. 

We introduce Ai is directed-sups-inheriting as a synonym of Aa satisfies INT. 
The following propositions are true: 

(43) Let L be a non empty relation structure, and let Ai be a binary relation on L, and let x, z 
be elements of L. If (x, z) G Ai and x = z, then there exists an element y of L such that {x, 
y) G Ai and (y, z) G Aa. 

(44) Let £ be a non empty relation structure and let Ai be a binary relation on L. If Ai satisfies 
SI , then Ai satisfies INT . 

Let L be a non empty relation structure. Note that every binary relation on L which satisfies SI 
satisfies also INT. 

In the sequel Ai will denote an auxiliary binary relation on L and x, y, z will denote elements of 
L. 

One can prove the following four propositions: 

(45) Let Ai be an approximating auxiliary binary relation on L. If x ^ y, then there exists an 
element u of L such that (u, x) G Ai and u ^ y. 

(46) Let R be an approximating auxiliary binary relation on L. If {x, z) G R and x ^ z, then 
there exists y such that x < y and {y, z) G R and x ^ y. 

(47) Let R be an approximating auxiliary binary relation on L. Suppose x < z and x ^ z. Then 
there exists an element y of L such that {x, y) G R and (?/, z) G R and x ^ y. 

(48) For every lower-bounded continuous lattice L holds (L) -waybelow satisfies SI . 

Let L be a lower-bounded continuous lattice. Note that (L) —waybelow satisfies SI. 
We now state two propositions: 

(49) Let L be a lower-bounded continuous lattice and let x, y be elements of L. If x <C y, then 
there exists an element x' of L such that I<I' and x' <C y. 

(50) Let L be a lower-bounded continuous lattice and let x, y be elements of L. Then a; <C 2/ if and 
only if for every non empty directed subset D of L such that y < sup D there exists an element 
d of L such that d E D and x <C d. 

3. EXERCISES 

Let X be a relation structure, let X be a subset of L, and let Ä be a binary relation on the carrier 
of L. We say that X is directed wrt R if and only if: 

(Def.23)     For all elements x, y of L such that x G X and y E X there exists an element z of I such 
that z £ X and (z, z)£Ü and {y, z) G -R. 

One can prove the following proposition 

(51)     Let L be a relation structure and let X be a subset of L.   Suppose X is directed wrt the 
internal relation of L. Then X is directed. 

Let L be a relation structure, let X be a set, let x be an element of L, and let R be a binary 
relation on the carrier of L. We say that x is maximal wrt X, R if and only if: 

(Def.24)     x E. X and it is not true that there exists an element y of L such that y G X and y ^ x and 

Let £ be a relation structure, let X be a set, and let x be an element of L.   We say that x is 
maximal in X if and only if: 

(Def.25)     x is maximal wrt X, the internal relation of L. 

The following proposition is true 
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(52) Let L be a relation structure, and let X be a set, and let x be an element of L.  Then x is 
maximal in X if and only if the following conditions are satisfied: 

(i)     x G X, and 
(ii)     it is not true that there exists an element y of L such that y G X and x < y. 

Let I be a relation structure, let X be a set, let x be an element of L, and let R be a binary 
relation on the carrier of L. We say that x is minimal wrt X, R if and only if: 

(Def.26)     x G X and it is not true that there exists an element y of L such that y G X and ?/ / a; and 
(2/, x) G Ä. 

Let i be a relation structure, let X be a set, and let x be an element of L.   We say that x is 
minimal in X if and only if: 

(Def.27)     x is minimal wrt X, the internal relation of L. 

The following propositions are true: 

(53) Let L be a relation structure, and let X be a set, and let x be an element of L.  Then x is 
minimal in X if and only if the following conditions are satisfied: 

(i)     x G X, and 
(ii)     it is not true that there exists an element y of L such that y G X and x > y. 

(54) If Ai satisfies SI , then for every x such that there exists y such that y is maximal wrt 
(Ai) —below(a;), A\ holds (a;, x) G A\. 

(55) If for every x such that there exists y such that y is maximal wrt (A\) —below(a;), A\ holds 
{x, x) G Ai, then Ai satisfies SI . 

(56) If Ai satisfies INT , then for every x holds (Ai) —below(a;) is directed wrt Ai. 
(57) If for every x holds (Ai) —below(a:) is directed wrt Ai, then Ai satisfies INT . 

(58) Let R be an approximating auxiliary binary relation on L. If R satisfies INT , then R satisfies 
SI. 

Let us consider L. Observe that every approximating auxiliary binary relation on L which satisfies 
INT satisfies also SI. 
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Summary. The class of continuous lattices can be characterized by infinitary equations. 
Therefore, it is closed under the formation of subalgebras and homomorphic images. Following 
the terminology of [18] we introduce a continuous lattice subframe to be a sublattice closed under 
the formation of arbitrary infs and directed sups. This notion corresponds with a subalgebra of a 
continuous lattice in [15]. 

The class of completely distributive lattices is also introduced in the paper. Such lattices are 
complete and satisfy the most restrictive type of general distributivity law. Obviously each com- 
pletely distributive lattice is a Heyting algebra. It was hard to find the best Mizar implementation 
of the complete distributivity equational condition (denoted by CD in [15]). The powerful and well 
developed Many Sorted Theory gives the most convenient way of this formalization. A set double 
indexed by K, introduced in the paper, correspond with a family {xhk '■ j € J,k E K(j)}. It is 
defined to be a suitable many sorted function. Two special functors: Sups and Infs as counter- 
parts of Sup and Inf respectively, introduced in [35], are also defined. Originally the equation in 
Definition 2.4 of [15, p. 58] looks as follows: 

AjS.7 Vk£K(j)Xi-k = VfzMl\j£JXi,SU)> 

where M is the set of functions defined on J with values f(j) £ K(j). The Mizar implementation 
can be found below. 

MML Identifier: WAYBEL.5. 
URL Address: http: //mizar.uw.bialystok.pl/JFM/Vol8/waybel_5.html. 

The articles [30], [33], [34], [13], [14], [31], [9], [10], [4], [2], [27], [32], [3], [6], [26], [12], [8], [29], [22], [23], 
[28], [20], [24], [25], [19], [21], [16], [1], [17], [35], [11], [5], and [7] provide the notation and terminology 
for this paper. 

1. THE CONTINUITY OF LATTICES 

In this paper x, y will be arbitrary, X will be a set, and L will be an up-complete semilattice. 
One can prove the following propositions: 

(1) L is continuous if and only if for every element x of L holds lx is an ideal of L and x < sup lx 
and for every ideal I oi L such that x < sup / holds lx C /. 

(2) L is continuous if and only if for every element x of L there exists an ideal I oi L such that 
x < sup I and for every ideal J of L such that x < sup J holds I C J. 

(3) For every continuous lower-bounded sup-semilattice L holds SupMap(L) has a lower adjoint. 

1This work was partly supported by Office of Naval Research Grant N00014-95-1-1336. 

1 (c)   1996 Association  of Mizar Users 
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(4) For every up-complete lower-bounded lattice L such that SupMap(Z-) is upper adjoint holds 
L is continuous. 

(5) For every complete semilattice L such that SupMap(i) is infs-preserving and sups-preserving 
holds SupMap(i) has a lower adjoint. 

Let J, D be sets and let K be a many sorted set indexed by J. A set of elements of D double 
indexed by K is a many sorted function from K into J i—► D. 

Let J be a set, let K be a many sorted set indexed by J, and let S be a 1-sorted structure. A set 
of elements of S double indexed by K is a set of elements of the carrier of S double indexed by K. 

One can prove the following proposition 

(6) Let J, D be sets, and let K be a many sorted set indexed by J, and let F be a set of elements 
of D double indexed by K, and let j be arbitrary. If j G </, then F(j) is a function from K(j) 
into D. 

Let J, D be non empty sets, let K be a many sorted set indexed by J, let F be a set of elements 
of D double indexed by K, and let j be an element of J. Then F(j) is a function from K(j) into D. 

Let J, D be non empty sets, let K be a non-empty many sorted set indexed by J, let F be a set 
of elements of D double indexed by A', and let j be an element of J. Observe that rngF(j') is non 
empty. 

Let J be a set, let D be a non empty set, and let K be a non-empty many sorted set indexed by 
J. Note that every set of elements of D double indexed by K is non-empty. 

Next we state four propositions: 
(7) For every function yielding function F and for arbitrary / such that / £ domFrege(F) holds 

/ is a function. 
(8) For every function yielding function F and for every function / such that / 6 domFrege(F) 

holds dorn/ = domF and domF = dom(Frege(F))(/). 

(9) Let F be a function yielding function and let / be a function. Suppose / 6 domFrege(F). 
Let i be arbitrary. If i G domF, then f(i) G domF(i) and (Frege(F))(/)(i) = F(i)(f(i)) and 
F(i)(f(i)) G rng(Frege(F))(f). 

(10)     Let J, D be sets, and let K be a many sorted set indexed by J, and let F be a set of elements 
of D double indexed by K, and let / be a function. If / G domFrege(F), then (Frege(F))(/) is 
a function from J into D. 

Let J be a set, let S be a non empty 1-sorted structure, and let F be a function from J into the 
carrier of S. Then rng F is a subset of S. 

Let / be a non-empty function. Note that domK /(K) is non-empty. 
Let J, D be sets, let K be a many sorted set indexed by J, and let F be a set of elements of D 

double indexed by K. Then Frege(F) is a set of elements of D double indexed by FI(domK F(K)) I—> J. 
Let J, D be non empty sets, let K be a non-empty many sorted set indexed by J, let F be 

a set of elements of D double indexed by K, let G be a set of elements of D double indexed by 
n(domK F(K)) I—► J, and let / be an element of FI(domK F(K)). Then G{f) is a function from J into 
D. 

Let L be a non empty relation structure and let F be a function yielding function. The functor 
|_L F yielding a function from dorn F into the carrier of L is defined by: 

(Def.l)     For every x such that x G domF holds (jj   F)(x) = \JL F(x). 

The functor [~|L F yielding a function from dorn F into the carrier of L is defined as follows: 

(Def.2)     For every x such that x G domF holds (\\ F)(x) = \~\LF(x). 

Let J be a set, let K be a many sorted set indexed by J, let Ibea non empty relation structure, 
and let F be a set of elements of L double indexed by K. We introduce Sups(F) as a synonym of 
[J   F. We introduce Infs(F) as a synonym of |~|L F. 

Let 7, J be sets, let L be a non empty relation structure, and let F be a set of elements of L double 
indexed by I \—> J. We introduce Sups(F) as a synonym of |J   F. We introduce Infs(F) as a synonym 
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The following propositions are true: 
(11) Let L be a non empty relation structure and let F, G be function yielding functions. If 

domF = domG and for every x such that x G domF holds |JL F{x) = \JLG(X), then JJL F = 
ULG. 

(12) Let L be a non empty relation structure and let F, G be function yielding functions. If 
domF = domG and for every x such that x G domF holds \~\LF(X) = \~}LG(X), then [~|L F = 

T\LG. 
(13) Let L be a non empty relation structure and let F be a function yielding function. Then 

(i)     y G rng |J   F iff there exists x such that x G dorn F and y = |JL F(x), and 

(ii)     y G rng [~]L F iff there exists a; such that x G dorn F and y = f~]x/F(a;). 

(14) Let L be a non empty relation structure, and let J be a non empty set, and let K be a many 
sorted set indexed by </, and let F be a set of elements of L double indexed by K. Then 

(i)     x G rngSups(F) iff there exists an element j of J such that x = Sup(F(j)), and 
(ii)     x G rnglnfs(F) iff there exists an element j of J such that x = Inf(F(j)). 

Let J be a non empty set, let K be a many sorted set indexed by J, let L be a non empty relation 
structure, and let F be a set of elements of L double indexed by K. One can check that rngSups(F) 
is non empty and rnglnfs(F) is non empty. 

For simplicity we follow a convention: L will be a complete lattice, a, 6, c will be elements of L, J 
will be a non empty set, and K will be a non-empty many sorted set indexed by J. 

We now state four propositions: 
(15) Let F be a function yielding function^ If for every function / such that / G domFrege(F) 

holds nz,(Frege(F))(/) < a, then Sup(TlL Frege(F)) < a. 
(16) For every set F of elements of L double indexed by K holds Inf(Sups(F)) > 

Sup(Infs(Frege(F))). 

(17) If L is continuous and for every c such that c < a holds c < 6, then a < b. 

(18) L is continuous if and only if for all J, K and for every set F of elements of L double indexed 
by K such that for every element j of J holds rng F(j) is directed holds Inf(Sups(F)) = 
Sup(Infs(Frege(F))). 

Let J, K, D be non empty sets and let F be a function from [: J, K :] into D. Then curry F is a 
set of elements of D double indexed by J i—> K. 

We follow the rules: J, K, D denote non empty sets, j denotes an element of J, and k denotes an 
element of K. 

The following four propositions are true: 
(19) For every function F from [: J, K\ into D holds dorn curry F = J and dom(curry F)(j) = K 

and F({j,k)) = (curry F)(j)(k). 

(20) L is continuous if and only if for all non empty sets J, K and for every function F from [: J, 
K\ into the carrier of L such that for every element j of J holds rng(curry F)(j) is directed 
holds Inf(Sups(curry F)) = Sup(Infs(Frege(curry F))). 

(21) Let F be a function from [.J, A':] into the carrier of L and let X be a subset of L. 
Suppose X   =   {a   :   a ranges over elements of L,  \Jf: non.emptymany sorted set indexed by J   /  £ 

(Finii')J      A      VG:set of elements of L double indexed by/     Aj,x     X     £     fU)        =>        GU)(X)    =     F((j, 

x))  A  a = Inf(Sups(G))}. Then Inf(Sups(curry F)) > supX. 

(22) L is continuous if and only if for all J, K and for every function F from [:J, 
K:] into the carrier of L and for every subset I of I such that X — {a : 
a   ranges   over   elements   of   L,    V/:non-emPtymany sorted set indexed by J    /     G     (FinA')J      A 

VG : set of elements of L double indexed  by /     Aj,x     X     £     f{j)        =>        GO'Xa:)    =     F((j,x))      A      Ü     = 

Inf(Sups(G))} holds Inf(Sups(curry F)) = sup X. 
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2. COMPLETELY-DISTRIBUTIVE LATTICES 

Let L be a non empty relation structure. We say that L is completely-distributive if and only if 
the conditions (Def.3) are satisfied. 

(Def.3) (i)     L is complete, and 
(ii)     for every non empty set J and for every non-empty many sorted set K indexed by J and for 

every set F of elements of L double indexed by K holds Inf(Sups(F)) = Sup(Infs(Frege(.F))). 

In the sequel J denotes a non empty set and K denotes a non-empty many sorted set indexed by 
J. 

Let us mention that every non empty poset which is trivial is also completely-distributive. 
Let us observe that there exists a lattice which is completely-distributive. 
Next we state the proposition 

(23) Every completely-distributive lattice is continuous. 

Let us note that every lattice which is completely-distributive is also complete and continuous. 
The following propositions are true: 

(24) Let X be a non empty antisymmetric transitive relation structure with g.l.b.'s, and let x be 
an element of L, and let X, Y be subsets of L. Suppose sup X exists in L and sup Y exists in 
L and Y — {x n y : y ranges over elements of L, y G X}. Then x n sup X > sup Y. 

(25) Let L be a completely-distributive lattice, and let X be a subset of L, and let x be an element 
of L. Then x l~l supX = \JL{X n y : y ranges over elements of L, y £ X}. 

Let us mention that every lattice which is completely-distributive is also Heyting. 

3. SUBFRAMES OF CONTINUOUS LATTICES 

Let L be a non empty relation structure. A continuous subframe of L is an infs-inheriting directed- 
sups-inheriting non empty full relation substructure of L. 

We now state three propositions: 

(26) Let F be a set of elements of L double indexed by K. If for every element j of J holds 
rngF(j') is directed, then rngInfs(Frege(F)) is directed. 

(27) If L is continuous, then every continuous subframe of L is a continuous lattice. 

(28) For every non empty poset S such that there exists map from L into S which is infs-preserving 
and onto holds S is a complete lattice. 

Let J be a set and let y be arbitrary. We introduce J t=> y as a synonym of J i—► y. 
Let J be a set and let y be arbitrary. Then J \—> y is a many sorted set indexed by J. We 

introduce J i=> y as a synonym of J \—> y. 
Let A, B, J be sets and let / be a function from A into B. Then J c=> / is a many sorted function 

from J i—► A into J i—► B. 
We now state four propositions: 

(29) Let A, B be sets, and let / be a function from A into B, and let g be a function from B into 
A. If g ■ f - idyi, then (JP^J)O(JP^ /) =id(J^_+j4). 

(30) Let J, A be non empty sets, and let B be a set, and let K be a many sorted set indexed by 
J, and let F be a set of elements of A double indexed by K, and let / be a function from A 
into B. Then (J i=> /) o F is a set of elements of B double indexed by K. 

(31) Let J, A, B be non empty sets, and let K be a many sorted set indexed by J, and let F 
be a set of elements of A double indexed by K, and let / be a function from A into B. Then 
domK(J i=>- /) o F(K) = domK F(K). 
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(32)     Suppose L is continuous. Let S be a non empty poset. Suppose there exists map from L into 
S which is infs-preserving directed-sups-preserving and onto. Then 5 is a continuous lattice. 
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Summary. In the article we continue the formalization in Mizar of [16]. We work with 
structures of the form 

L = (C, <, T), 

where C is the carrier of the structure, < - an ordering relation on C and r a family of subsets of 
C. 

When (C, <) is a complete lattice we say that L is Scott if r is the Scott topology of (C,  <). 
We define the Scott convergence (lim inf convergence). Following [16] we prove that in the 

case of a continuous lattice (C, <) the Scott convergence is topological, i.e. enjoys the properties: 
CONSTANT, SUBNET, DIVERGENCE, ITERATED LIMITS. We formalize the theorem that if 
the Scott convergence has the ITERATED LIMITS property, the (C, <) is continuous. 

The facts proved in the article cover pages 98-105 of the book. 

MML Identifier: WAYBEL11. 
URL Address: http://mizar.uw.bialystok.pl/JFM/Vol9/waybelll.html. 

The articles [33], [36], [38], [26], [14], [15], [37], [11], [12], [10], [2], [9], [34], [23], [28], [39], [29], [27], 
[42], [18], [31], [6], [7], [25], [5], [24], [35], [3], [1], [4], [17], [41], [13], [19], [20], [21], [8], [40], [32], [22], 
and [30] provide the notation and terminology for this paper. 

1. PRELIMINARIES 

The scheme Irre/deals with non empty sets A, B, a unary functor T yielding a set, a binary functor 
T yielding a set, and a unary predicate V, and states that: 

{T(u) : u ranges over elements of A, V[u]} = {T(i,v) : i ranges over elements of B, v 
ranges over elements of A, V[v]} 

provided the following condition is satisfied: 
•  For every element i of B and for every element u of A holds T{u) = T(i, u). 
One can prove the following propositions: 

(1) Let L be a complete non empty lattice and let X, Y be subsets of the carrier of L. If Y is 
coarser than X, then n^^ ^ 1~\LY. 

(2) Let I be a complete non empty lattice and let X, Y be subsets of the carrier of L. If X is 
finer than Y, then |JL X < [_|L Y. 

(3) Let T be a relation structure, and let A be an upper subset of T, and let B be a directed 
subset of T. Then A D B is directed. 

Let T be a reflexive non empty relation structure. One can check that there exists a subset of T 
which is non empty directed and finite. 

Next we state the proposition 
JThis work was partially supported by Office of Naval Research Grant N00014-95-1-1336. 
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(4) For every non empty poset T with l.u.b.'s and for every non empty directed finite subset D 
of T holds supD E D. 

Let us observe that there exists a relation structure which is trivial reflexive transitive non empty 
antisymmetric finite and strict and has l.u.b.'s. 

One can verify that there exists a 1-sorted structure which is finite non empty and strict. 
Let T be a finite 1-sorted structure. One can verify that every subset of T is finite. 
Let R be a relation structure. One can check that 0# is lower and upper. 
Let R be a trivial non empty relation structure. Observe that every subset of R is upper. 
Next we state two propositions: 

(5) Let T be a non empty relation structure, and let x be an element of T, and let A be an upper 
subset of T. If x ^ A, then A misses [x. 

(6) Let T be a non empty relation structure, and let x be an element of T, and let A be a lower 
subset of T. If x £ A, then [x C A. 

2. SCOTT TOPOLOGY 

Let T be a non empty reflexive relation structure and let S be a subset of T.  We say that S is 
inaccessible by directed joins if and only if: 

(Def. 1)     For every non empty directed subset D of T such that sup D £ S holds D meets S. 

We introduce S is inaccessible as a synonym of S is inaccessible by directed joins. We say that S is 
closed under directed sups if and only if: 

(Def. 2)     For every non empty directed subset D of T such that DCS holds sup D £ S. 

We introduce S is directly closed as a synonym of S is closed under directed sups. We say that S has 
the property (S) if and only if the condition (Def. 3) is satisfied. 

(Def. 3)     Let D be a non empty directed subset of T. Suppose sup D £ S. Then there exists an element 
y of T such that y £ D and for every element x of T such that x £ D and x > y holds x £ S. 

Let T be a non empty reflexive relation structure. Observe that 0T is directly closed and has the 
property (S). 

Let T be a non empty reflexive relation structure. One can verify that there exists a subset of T 
which is directly closed and has the property (S). 

Let T be a non empty reflexive relation structure and let S be a subset of T with the property (S). 
Observe that -S is directly closed. 

Let T be a reflexive non empty TopRelStr. We say that T is Scott if and only if: 

(Def. 4)     For every subset S of T holds S is open iff S is inaccessible and upper. 
Let T be a reflexive transitive antisymmetric non empty finite relation structure with l.u.b.'s. 

Observe that every subset of T is inaccessible. 
Let T be a reflexive transitive antisymmetric non empty finite TopRelStr with l.u.b.'s.   Let us 

observe that T is Scott if and only if: 

(Def. 5)     For every subset S of T holds S is open iff S is upper. 
Let us note that there exists a non empty strict TopLattice which is trivial complete and Scott. 
Let T be a non empty reflexive relation structure. Note that 0^ is directly closed and inaccessible. 
Let T be a non empty reflexive relation structure.  Note that there exists a subset of T which is 

directly closed lower inaccessible and upper. 
Let T be a complete non empty TopLattice and let S be an inaccessible subset of T. Observe that 

—S is directly closed. 
Let T be a non empty reflexive relation structure and let S be a directly closed subset of T. Note 

that —S is inaccessible. 
Next we state several propositions: 
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(7) Let T be a complete Scott non empty TopLattice and let S be a subset of T. Then S is closed 
if and only if S is directly closed and lower. 

(8) For every complete non empty TopLattice T and for every element x of T holds [x is directly 
closed. 

(9) For every complete Scott non empty TopLattice T and for every element x of T holds {x} = [x. 

(10) Every complete Scott non empty TopLattice is a Tb-space. 
(11) For every complete Scott non empty TopLattice T and for every element x of T holds [x is 

closed. 

(12) For every complete Scott non empty TopLattice T and for every element x of T holds — {x is 
open. 

(13) Let T be a complete Scott non empty TopLattice, and let x be an element of T, and let A be 
an upper subset of T. If x £ A, then —\,x is a neighbourhood of A. 

(14) Let T be a complete Scott non empty TopLattice and let S be an upper subset of T. Then 
there exists a family F of subsets of T such that S = f] F and for every subset X of T such 
that X E F holds X is a neighbourhood of S. 

(15) Let T be a Scott non empty TopLattice and let S be a subset of T. Then 5 is open if and 
only if S is upper and has the property (S). 

Let T be a complete non empty TopLattice.  Note that every subset of T which is lower has the 
property (S). 

The following proposition is true 
(16) Let T be a non empty transitive reflexive TopRelStr.  Suppose the topology of T = {S : S 

ranges over subsets of T, S has the property (S)}. Then T is topological space-like. 

3. SCOTT CONVERGENCE 

In the sequel R will denote a non empty relation structure, iV will denote a net in R, and i, j will 
denote elements of the carrier of N. 

Let us consider R, N. The functor liminf N yields an element of R and is defined by: 

(Def. 6)     liminf N = |_]fi{rifi{^(0 '■ i > j} '• 3 ranges over elements of the carrier of N}. 
Let Äbea reflexive non empty relation structure, let N be a net in R, and let p be an element of 

the carrier of R. We say that p is S-limit of N if and only if: 

(Def. 7)     p<liminfiV. 
Let R be a reflexive non empty relation structure.  The functor Scott-Convergence(Ä) yielding a 

Convergence-Class of R is defined by the condition (Def. 8). 

(Def. 8)     Let N be a strict net in R. Suppose N 6 NetUniv(Ä). Let p be an element of the carrier of 
R. Then {N, p) G Scott-Convergence(Ä) if and only if p is S-limit of N. 

The following propositions are true: 
(17) Let R be a non empty complete lattice, and let N be a net in i?, and let p, q be elements of 

the carrier of R. If p is S-limit of N and iV is eventually in [q, then p < q. 

(18) Let R be a non empty complete lattice, and let N be a net in R, and let p, q be elements of 
the carrier of R. If N is eventually in |Q, then liminf N > q. 

Let R be a reflexive non empty relation structure and let N be a non empty net structure over R 
Let us observe that N is monotone if and only if: 

(Def. 9)     For all elements i, j of the carrier of N such that i < j holds N(i) < N(j). 

Let R be a non empty relation structure, let S be a non empty set, and let / be a function from 
S into the carrier of R. The functor NetStr(5, /) yields a strict non empty net structure over R and 
is defined by the conditions (Def. 10). 
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(Def. 10) (i)     The carrier of NetStr(5, /) = 5, 
(ii)     the mapping of NetStr(5, /) = /, and 

(iii)     for all elements i, j of NetStr(S, /) holds * < j iff (NetStr(S, f))(i) < (NetStr(5, f))(j). 

We now state two propositions: 

(19) Let L be a non empty 1-sorted structure and let N be a non empty net structure over L. 
Then rng (the mapping of N) = {N(i) : i ranges over elements of the carrier of N}. 

(20) Let R be a non empty relation structure, and let S be a non empty set, and let / be a function 
from S into the carrier of R. If rng / is directed, then NetStr(5, /) is directed. 

Let R be a non empty relation structure, let S be a non empty set, and let / be a function from 
S into the carrier of R. Note that NetStr(5, /) is monotone. 

Let R be a transitive non empty relation structure, let S be a non empty set, and let / be a function 
from S into the carrier of R. Note that NetStr(5, /) is transitive. 

Let R be a reflexive non empty relation structure, let 5 be a non empty set, and let / be a function 
from 5 into the carrier of R. Observe that NetStr(5, /) is reflexive. 

The following proposition is true 

(21) Let R be a non empty transitive relation structure, and let S be a non empty set, and let / 
be a function from S into the carrier of R. If S C the carrier of R and NetStr(5, /) is directed, 
then NetStr(S,/) G NetUniv(Ä). 

Let R be a non empty lattice. Observe that there exists a net in R which is monotone reflexive 
and strict. 

One can prove the following propositions: 

(22) For every non empty complete lattice R and for every monotone reflexive net N in R holds 
lim inf N = sup N. 

(23) For every complete non empty lattice R and for every constant net N in R holds 
thevalueof(iV) = lim inf TV. 

(24) For every complete non empty lattice R and for every constant net N in R holds thevalueof(iV) 
is S-limit of N. 

Let S be a non empty 1-sorted structure and let e be an element of the carrier of S. The functor 
NetStr(e) yields a strict net structure over S and is defined by: 

(Def. 11)     The carrier of NetStr(e) = {e} and the internal relation of NetStr(e) = {(e, e)} and the 
mapping of NetStr(e) = id{e}. 

Let S be a non empty 1-sorted structure and let e be an element of the carrier of S. Observe that 
NetStr(e) is non empty. 

The following two propositions are true: 

(25) Let S be a non empty 1-sorted structure, and let e be an element of the carrier of 5, and let 
x be an element of NetStr(e). Then x = e. 

(26) Let S be a non empty 1-sorted structure, and let e be an element of the carrier of 5, and let 
x be an element of NetStr(e). Then (NetStr(e))(x) = e. 

Let 5 be a non empty 1-sorted structure and let e be an element of the carrier of S.  Note that 
NetStr(e) is reflexive transitive directed and antisymmetric. 

Next we state several propositions: 

(27) Let S be a non empty 1-sorted structure, and let e be an element of the carrier of S, and let 
X be a set. Then NetStr(e) is eventually in X if and only if e 6 X. 

(28) Let S be a reflexive antisymmetric non empty relation structure and let e be an element of 
the carrier of S. Then e = lim inf NetStr(e). 

(29) For every non empty reflexive relation structure S and for every element e of the carrier of S 
holds NetStr(e) G NetUniv(S). 
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(30) Let R be a non empty complete lattice, and let Z be a net in R, and let D be a subset of 
R. Suppose D = {|~]ß{Z(A;) : k ranges over elements of the carrier of Z, k > j} : j ranges over 
elements of the carrier of Z}. Then D is non empty and directed. 

(31) Let L be a non empty complete lattice and let S be a subset of L. Then S £ the topology of 
ConvergenceSpace(Scott-Convergence(Z,)) if and only if S is inaccessible and upper. 

(32) For every non empty complete Scott TopLattice T holds the topological structure of T = 
ConvergenceSpace(Scott-Convergence(T)). 

(33) Let T be a non empty complete TopLattice. Suppose the topological structure of T = 
ConvergenceSpace(Scott-Convergence(T)). Let S be a subset of T. Then S is open if and 
only if S is inaccessible and upper. 

(34) For every non empty complete TopLattice T such that the topological structure of T = 
ConvergenceSpace(Scott-Convergence(T)) holds T is Scott. 

Let R be a complete non empty lattice. Note that Scott-Convergence(Ä) is (CONSTANTS). 
Let R be a complete non empty lattice. One can verify that Scott-Convergence(Ä) is (SUBNETS). 
One can prove the following proposition 

(35) Let S be a non empty 1-sorted structure, and let N be a net in S, and let X be a set, and 
let M be a subnet of N. If M = N _1 X, then for every element i of the carrier of M holds 
M(i) G X. 

Let L be a non empty complete lattice. The functor sigma(L) yields a family of subsets of L and 
is defined by: 

(Def. 12)     sigma(X) = the topology of ConvergenceSpace(Scott-Convergence(i)). 

Next we state two propositions: 
(36) For every continuous complete Scott TopLattice L and for every element x of L holds fa; is 

open. 

(37) For every non empty complete TopLattice T such that the topology of T = sigma(T) holds 
T is Scott. 

Let R be a continuous non empty complete lattice.   One can check that Scott-Convergence(i2) is 
topological. 

One can prove the following propositions: 

(38) Let T be a continuous non empty complete Scott TopLattice, and let x be an element of the 
carrier of T, and let N be a net in T. If N G NetUniv(T), then x is S-limit of N iff x G Lim N. 

(39) For every complete non empty poset L such that Scott-Convergence(X) is (ITERATED LIM- 
ITS) holds L is continuous. 

(40) For every complete Scott non empty TopLattice T holds T is continuous iff Convergence(T) = 
Scott-Convergence(T). 

(41) For every complete Scott non empty TopLattice T and for every upper subset S of T such 
that S is Open holds S is open. 

(42) Let L be a non empty relation structure, and let S be an upper subset of L, and let x be an 
element of L. If x £ S, then \x C S. 

(43) Let L be a non empty complete continuous Scott TopLattice, and let p be an element of L, 
and let 5 be a subset of L. If S is open and p £ 5, then there exists an element q of L such 
that q <C p and q G S. 

(44) Let L be a non empty complete continuous Scott TopLattice and let p be an element of L. 
Then {^q : q ranges over elements of L, q <C p] is a basis of p. 

(45) For every complete continuous Scott non empty TopLattice T holds {fa: : a: ranges over 
elements of T} is a basis of T. 

(46) Let T be a complete continuous Scott non empty TopLattice and let S be an upper subset of 
T. Then S is open if and only if S is Open. 
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(47) For every complete continuous Scott non empty TopLattice T and for every element p of T 
holds Intfp = |p. 

(48) Let T be a complete continuous Scott non empty TopLattice and let S be a subset of T. Then 
Int S = (J{f ^ : x ranges over elements of T, |x C S}. 
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• Number of refereed papers submitted not yet published: 0 
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Number of refereed papers published: 0 
Number of unrefereed reports and articles: 22 
Number of books or parts thereof submitted but not published: 0 
Number of books or parts thereof published: 0 
Number of project presentations: 0 
Number of patents filed but not yet granted: 0 
Number of patents granted and software copyrights: 0 
Number of graduate students supported >= 25% of full time: 4 
Number of post-docs supported >= 25% of full time: 0 
Number of minorities supported: 0 

Summary of Objectives and Approach. 

1. The main goal is to prove that in the case of an automatically generated mathematical text with 
sources which can be processed by the computer on the semantic level it is possible to build up 
automatically a rich system of hyperlinks. The objective is to find general rules of automatic 
hyper-linking for a specific set of documents: the articles published in the Journal of 
Formalized Mathematics. 

2. Another goal is to translate to Mizar A Compendium of Continuous Lattices (by G.Gierz, K.H. 
Hoffman, K. Keimel, J.D Lawson, M. Mislove, and D.S. Scott - Springer-Verlag, Berlin, 
Heidelberg, New York 1980). We believe translating a part of a book is a better test for 
feasibility of practical formalization of mathematics than formalization of separate proofs. The 
concentration of efforts on a specific field of mathematics moves us closer to one of milestones 
of QED Project - to reach research frontiers in a field of mathematics. 

Detailed Summary of Technical Pro2ress. 

1. The translation of whole MML (Mizar Mathematical Library) to JFM (Journal of Formalized 
Mathematics) format has been done in summer 95. This experiment resulted in debugging and 
enhancing the software used. 

2. A preliminary design of JFM (Journal of Formalized Mathematics) has been completed 
(HTML-pages, directories, links). 

3. In April 96 JFM was regenerated using corrected software. About 450 articles are published in 
JFM. The MML evolved fast between August 95 and April 96. 

4. In August and September 95 a course on continuous lattices had been delivered (10 
hours/week). Since November 95 it was continued as a seminar (2 hours/week). 

5. The home pages of articles published in JFM have been redesigned. The references are moved 
to HTML page and the sections are linked to sections in postscript. However, the complete 
postscript versions of the publications are still kept (link: "download postscript version "). 

6. The Journal has been moved to new host: http://mizar.uw.bialystok.pl/JFM/. 
7. The system for inserting links (without human assistance) has been developed and it is used for 

linking. It inserted 288,578 links in 469 Mizar abstracts, about 600 links per article. New 
articles are linked when submitted and put to Preprints. 

8. The articles written to formalize the Compendium are divided into two series WAYBEL and 
YELLOW 
An article belonging to the WAYBEL series is a translation of part of the Compendium. 
Articles belonging to YELLOW series provide a bridge to Mizar Mathematical Library and 
cover the mathematical knowledge needs to write the WAYBEL articles but not formalized in 
MML (e.g Moore-Smith convergence). 
The most important observation is that MML was almost ready for formalization of the 
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The most important observation is that MML was almost ready for formalization of the 
Compendium. (The size of the WAYBEL series and the YELLOW series is of the same order: 
WAYBEL - 1,218,391 bytes, YELLOW - 604,813 bytes and the WAYBEL series grows 
faster). 

9. The translation of the Compendium has reached page 105. 

Transitions and POD Interactions. 

Software and Hardware Prototypes. 

List of Publications. 

1. Grzegorz Bancerek, Bounds in Posets and Relational Substructures, J.Form.Math., vol. 8. 
2. Grzegorz Bancerek, Directed Sets, Nets, Ideals, Filters, and Maps, J.Form.Math., vol. 8. 
3. Adam Grabowski and Robert Milewski, Boolean Posets, Posets under Inclusion and Products 

of Relational Structures, J.Form.Math., vol. 8. 
4. Mariusz Zynel and Czeslaw Bylinski, Properties of Relational Structures, Posets, Lattices and 

Maps, J.Form.Math., vol. 8. 
5. Czeslaw Bylinski, Galois Connections, J.Form.Math., vol. 8. 
6. Artur Kornilowicz, Cartesian Products of Relations and Relational Structures, J.Form.Math., 

vol. 8. 
7. Artur Kornilowicz, Definitions and Properties of the Join and Meet of Subsets, J.Form.Math., 

vol. 8. 
8. Artur Kornilowicz, Meet - continuous Lattices, J.Form.Math., vol. 8. 
9. Grzegorz Bancerek, The "Way-Below"Relation, J.Form.Math., vol. 8. 

10. Adam Grabowski, Auxiliary and Approximating Relations, J.Form.Math., vol. 8. 
11. Mariusz Zynel, The Equational Characterization, J.Form.Math., vol. 8. 
12. Agnieszka Julia Marasik, Miscellaneous Facts about Relation Structure, J.Form.Math., vol. 8. 
13. Andrzej Trybulec. Moore-Smith Convergence, J.Form.Math., vol. 8. 
14. Grzegorz Bancerek, Duality in Relation Structures, J.Form.Math., vol. 8. 
15. Beata Madras, Irreducible and Prime Elements, J.Form.Math., vol. 8. 
16. Grzegorz Bancerek, Prime Ideals and Filters, J.Form.Math., vol. 8. 
17. Robert Milewski, Algebraic Lattices, J.Form.Math., vol. 8. 
18. Artur Kornilowicz. On The Topological Properties of Meet-Continuous Lattices, 

J.Form.Math., vol. 8. 
19. Andrzej Trybulec, Baire Spaces, Sober Spaces, J.Form.Math., vol. 9. 
20. Grzegorz Bancerek, Closure Operators and Subalgebras, J.Form.Math., vol. 9. 
21. Andrzej Trybulec, Scott Topology, J.Form.Math., vol. 9. 
22. Artur Kornilowicz, On the Baire Category Theorem, J.Form.Math., vol. 9. 

Invited and Contributed Presentations. 

March 16 - 19, 1996 TMR-NET Workshop. Rome, Italy 
August 27-30, 1996 TPHOLs'96. Turku, Finland 
November 18-20, 1996 TMR-NET Workshop. Dagstuhl, Germany 
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Honors, Prizes or Awards Received. 

Project Personnel Promotions. 

Project Staff. 

1. Name: Dr Andrzej Trybulec 
° Homepage 
o Position: Associate Professor 
o Task: principal investigator 

2. Name: Mr Grzegorz Bancerek 
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o Position: assistant professor 
o Task: developing electronic mathematical journal 

5. Name: Mr Artur Kornilowicz 
o Homepage 
o Position: assistant professor 
o Task: developing electronic mathematical journal 

6. Name: Ms Beata Madras 
o Homepage 
o Position: Assistant Professor 
o Task: developing Mizar Mathematical Library 

7. Name: Mr Roman Matuszewski 
o Homepage 
o Position: Senior research scientist 
o Task: co-principal investigator 

8. Name: Mr Mariusz Zynel 
o Homepage 
o Position: assistant professor 
o Task: developing electronic mathematical journal 

Multimedia URL. 

Keywords. 

1. Computer Oriented Formalization of Mathematics 
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1. Computer Oriented Formalization of Mathematics 
2. Mathematical Proof-Checked Journal 
3. Mizar Mathematical Library 
4. Encoding Mathematics 

Business Office 

• Business Office Phone Number: +48 (85) 457-016 
• Business Office Fax Number: +48 (85) 457-073 
• Business Office Email: trybulec@math.uw.bialystok.pl 

Expenditures 

1. Est.FY97: 100% 
2. FY96: 100 % 
3. FY95: 100% 

Current and Former Students 

1. Name: Mr Adam Grabowski 
o Homepage 
o Position: assistant professor 
o Nationality: Polish 
o Available for Summer at DoD Lab: Yes 
o Task: developing electronic mathematical journal 
o Thesis: Inverse limits of manysorted algebras. Examples of category structures. 
o Graduated: 1996 Master of Mathematics 
o Job: Institute of Mathematics, Warsaw University, Bialystok Branch 

2. Name: Mr Artur Kornilowicz 
o Homepage 
o Position: assistant professor 
o Nationality: Polish 
o Available for Summer at DoD Lab: Yes 
o Task: developing electronic mathematical journal 
o Thesis: Varieties of many sorted algebras 
o Graduated: 1996 Master of Mathematics 
o Job: Institute of Mathematics, Warsaw University, Bialystok Branch 

3. Name: Ms Agnieszka Marasik 
o Homepage 
o Position: graduate 
o Nationality: Polish 
o Available for Summer at DoD Lab: No 
o Task: developing electronic mathematical journal 
o Thesis: Algebraic closure operators 
o Job: 

4. Name: Mr Mariusz Zynel 
o Homepage 
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o Position: assistant professor 
o Nationality: Polish 
o Available for Summer at DoD Lab: Yes 
o Task: developing electronic mathematical journal 
o Thesis: Finite geometries over Grassmanians 
o Graduated: 1996 Master of Mathematics 
o Job: Institute of Mathematics, Warsaw University, Bialystok Branch 

Book Plans 

Sabbatical Plans 

Related Research 

1. OED Project 
2. Mizar Project 
3. TMR-NET - Mathematical Assistant (Training and Mobility for Researchers in the European 

Union Programme) 
4. OpenMath 
5. IMPS Interactive Mathematical Proof System. 
6. Formal Methods 
7. HOL mechanical theorem proving system. 
8. W3C HTML Math 

History 

1. Mizar MSE (sometimes called Baby Mizar) is a byproduct of the Mizar project used in teaching 
logic. More information in Mathesis Universalis - No.3 Mizar MSE 

2. Mizar is distributed by anonymous ftp site in Warsaw . This site is mirrored in Canada, 
University of Alberta and on three sites in Japan: Shinshu University , Chiba University , Tokyo 
University . 

3. Andrzej Trybulec visit in Argonne National Laboratory, May 1994, during QED Workshop I, 
supported by ONR (ONR Reference 5000-1133/93/A0068). 

4. The QED Workshop II organized by our group, July 1995 in Warsaw, co-sponsored by ONR 
(ONR order N00014-95-M-0072). 

5. John Harrison embedded a part of Mizar to HOL. He writes in abstract of A Mizar Mode for 
HOL in J. von Wright, J. Grudy, and J. Harrison Theorem Proving in Higher Order Logics in 
Proceedings o/TPHOLs'96, pages 204-220. Springer, published 1996, LNCS 1125 
"Existing HOL proofs styles are, however, very different from those used in textbooks. Here 
we describe the addition of another style, inspired by Mizar. We believe the resulting system 
combines the secure extensibility and interactivity of HOL with Mizar's readability and lack of 
logical prescriptiveness". 
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